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1 Overview

This report takes the first step in an investigation of I/O forwarding for commodity Linux clusters
to improve job launch scalability, reduce operating system jitter, and simplify system management.
We discuss the motivation and challenges presented by I/O forwarding through the lens of our
experiences with the IBM Blue Gene systems. We identify three I/O modes that each present
unique I/O forwarding requirements, and may fare differently in a cost/benefit calculation when
considering whether to forward or not. Finally, we present a set of requirements, broken down by
I/O mode, which can be used as the basis for an evaluation of possible options.

2 Motivation and Challenges

The original IBM Blue Gene/L system deployed at LLNL in 2004 demonstrated a novel method of
scaling I/O to very large compute node counts. IBM recognized that a system presenting 100,000 or
1,000,000 clients to HPC file systems of the day would probably not function, and certainly would
not perform well. Thus, instead of mounting file systems directly on each compute node, the Blue
Gene architecture, depicted in Figure 1, mounts file systems only on special purpose I/O nodes which
proxy I/O requests on behalf of a block of compute nodes, on the order of 64 or 128. The machine
thus presents a couple of orders of magnitude fewer file system clients to the site’s file system servers.

The Blue Gene architecture has some benefits and drawbacks. Among the benefts are:

• Avoiding N : 1 network connections to file system servers where N grows very large.

File
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Diagram borrowed from Pete Beckman ZOID paper

Figure 1: Blue Gene I/O nodes proxy I/O requests on behalf of compute nodes.
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• Reducing the number of concurrent requests that must be handled by servers, due to client
request aggregation and throttling.

• Reducing the amount of per-client state that must be maintained by servers, thus reducing
server memory footprint and server-side processing overhead.

• Reducing the memory and CPU impact of file system clients on compute nodes (there is little
to spare on Blue Gene compute nodes).

• In case of parallel read of the same file/directory, shared dentry and page cache on I/O nodes
reduces the number of requests sent to servers.

However, the architecture falls short of fulfilling its potential in the Blue Gene environment due
to:

• Blue Gene I/O nodes are small embedded systems like the compute nodes and have limited
memory, so performance is sometimes limited by I/O node capability, and benefits that might
have been obtained through I/O node caching are reduced due to memory pressure on the
cache.

• The workload that the file system client on the I/O node must handle looks quite different from
the simpler one normally seen when the client is run on a compute node and thus may confound
read-ahead, write aggregation, request queuing strategies, or other client side optimizations
placed there for a presumed common usage.

• The embedded I/O node hardware and software provided by IBM is challenging to integrate
and test with LC file systems and networking.

• The user mode function shipping implementation on Blue Gene creates some special challenges
in maintaining POSIX in the compute environment.

• The mapping of I/O nodes to compute nodes on Blue Gene is static, thus a set of jobs space
sharing the system and performing I/O in unsynchronized bursts will leave some I/O nodes
idle while others are fully utilized.

The Blue Gene architecture has served as a model for other I/O forwarding approaches, such as
Cray’s DVS[4], Argonne’s IOFSL[1], CEA’s NFS-Ganesha[2], and Livermore’s diod[3]. To date, I/O
forwarding has primarily been employed on capability-class machines. However, due to their high
productivity, commodity Linux clusters such as the TLCC systems have proliferated and increased
in size in recent years, and are starting to present I/O scalability challenges of their own. It is thus
natural to consider whether the Blue Gene model can be utilized to any advantage on commodity
Linux clusters.

I/O forwarding on Linux clusters will have similar benefits and challenges as on Blue Gene,
although the commodity hardware and open software model provides more flexibility to tune the
environment. Further, building up a new capability from scratch presents an opportunity to learn
from our experiences with Blue Gene and try to improve upon it.

3 I/O Modes

The three categories of I/O listed in Table 1 should be considered when discussing I/O forwarding
on commodity Linux clusters. Each mode presents unique requirements, and fares differently in a
cost/benefit calculation. It is possible to implement I/O forwarding for some modes but not others,
or with appropriate resource manager integration, allow users to choose direct mounts vs forwarding
for specific file systems, or configure custom forwarding topologies.

Conspicuously absent from this list is MPI-IO or other I/O middleware usage modes. Much has
been written about the opportunities for optimizing parallel I/O when applications expose more
of their strategy via API’s designed for parallel I/O. Despite its availability for many years, I/O
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Mode File System LC Usage
POSIX-serial
(static, ro)

NFS, ext4 on shared blkdev root, /usr/local

POSIX-serial
(dynamic, rw)

NFS home, /usr/gapps, /usr/global, NFS tmp

POSIX-parallel
(dynamic, rw)

Lustre, Panasas, Ceph, GPFS simulation data

Table 1: I/O Modes Considered for I/O Forwarding

middleware technology has to a large extent been ignored by LC’s user community. Thus, to have
an impact in LC, a proposed I/O forwarding mechanism for Linux clusters must focus on POSIX,
without precluding the use of such middleware.

3.1 POSIX Serial (static, read-only)

Root and /usr/local file systems at Livermore are updated with packaging discipline and thus can
be updated using processes that do not require live read-write access. Because of this, the content
in these file systems could be aggressively cached within the system. Currently, copies of these
file systems are replicated on each cluster scalable unit (on disk) and direct-mounted read-only on
compute nodes via NFSv3. NFSv3 presents a challenge to path search performance and has other
undesirable caching properties, such as the need to revalidate cached attributes periodically, despite
the fact that the file system content may be static.

Simply introducing a layer of I/O forwarding in front of NFS as on Blue Gene could help. When
compute nodes are loading the same data, the I/O node page and dentry caches will be hot, thus
the server will see a reduction in requests proportional to the I/O node to compute node ratio.

If we can accept that file system content cannot change while mounted, then we can dramatically
improve path search performance and scalability beyond the simple I/O forwarding case by using
I/O forwarding in combination with a network block device or loopback mount. In this scheme, file
system content is stored in an immutable local file system image (such as EXT4), which is in turn
stored in NFS. The NFS file system containing the image file is mounted on I/O nodes as on Blue
Gene, but the compute nodes mount the image file directly as though it were a local block device.

The main advantage of this technique is that compute nodes are able to cache metadata via the
buffer cache, thus metadata operations are no longer a barrier to scalability. A preliminary study of
this approach and its effect on path search is presented in Appendix A.

3.2 POSIX Serial (read-write)

Unmanaged content that is expected to be accessed (mostly) serially, such as home directories, resides
on global NFS servers. This content is expected to be in a state of constant change. Global NFS
servers are currently direct-mounted on all compute nodes of all commodity Linux clusters. Although
designed for serial access, these file systems do present scalability challenges for clusters since they
may contain, among other things, the current working directory of running jobs, executables that
may be parallel-loaded during launch, core dumps, log files, and input decks.

As with the POSIX serial (static, read-only) mode, a layer of I/O forwarding in this mode allows
parallel loaded executables and data to utilize the shared I/O node page and dentry caches and the
server will see a reduction of I/O requests proportional to the I/O node to compute node ratio.

3.3 POSIX Parallel

Each network zone contains several Lustre file systems that are direct mounted on all commodity
compute nodes within that zone. Lustre contains unmanaged bulk simulation data, treated by the

3



center as short-term scratch data. We generally think of our workload as being primarily file-per-
process parallel I/O, coming in bursts from this job or that job at any given time such that file
system bandwidth is amortized across all the jobs space sharing center resources.

The pluses and minuses of Blue Gene I/O forwarding described earlier apply here. A few of the
more significant benefits and costs for Lustre are discussed briefly below:

(+) Reduce Compute Node Jitter and Memory Impact Each Lustre client maintains state
for all Lustre servers, pings LNET peers (all neighboring routers) at T=50s, pings storage targets
(usually multiple per OST) at T = 150s, and holds locks that are lazily reclaimed. Moving the
client off of the compute nodes would have a significant impact on the amount of memory available
to applications and would reduce OS jitter. This impact grows proportionally with the number of
Lustre servers in the center.

(+) Reduce or Eliminate LNET Routing The LNET routing capability introduced flow con-
trol issues that sometimes are resolved by LNET requests being dropped. This violates an invariant
in the upper layers of Lustre’s protocol stack, resulting in myriad unplanned-for failure modes when
routers or interconnect fabrics become congested. I/O forwarding could be implemented such that
the forwarding nodes are direct-connected (via one LNET hop) to Lustre servers.

(+) Reduce Distributed Failure Lustre can be thought of as a big distributed system made
up of Lustre clients, servers, and sometimes routers. Lustre QA is weakest in the area of at-scale
distributed failure, so an architecture that reduces Lustre client failures ought to avoid tickling a
certain class of bugs that will perpetually resurface in the Lustre code base. Clients ought to fail
less in the I/O forwarding architecture because:

• There are fewer clients, so randomly distributed failures (e.g. hardware) have less overall effect.

• I/O nodes run more homogeneous activity than compute nodes which are under user control,
thus ought to run more predictably; for example, they should be less likely to enter memory
reclaim if provisioned properly.

• I/O nodes can be physically located closer to Lustre servers, thus failures and congestion in
cluster interconnects are avoided, increasing client reachability.

Caveat: one could expect a decrease in reliability of a single client presented with an I/O for-
warding workload, compared with a single client running a single compute node workload.

(−) Performance As described above, an I/O node client gets a rather different workload than
a compute node client, and we know from Blue Gene experience that Lustre does not necssarily
handle it well. It is speculated that to reach performance parity with direct mounts is a 2y effort
with current Lustre staff and plans (Chris Morrone).

(−) Fault Isolation When each Lustre client handles at most one job, it’s simple to correlate
Lustre errors with a particular job, and thus track down a user or code that may be causing problems.
In addition, a failure in the Lustre client only takes out one job. With I/O forwarding, the situation
could be made more awkward if multiple jobs are sending traffic through a single I/O node.

4



4 Requirements

1. Common to All Modes
1.1. POSIX

Forwarding client shall provide identical POSIX semantics to the file system being forwarded. A
POSIX file system test suite such as fstest run on I/O node and compute node shall produce
identical results.

1.2 no cache mode
Forwarding client shall support a mount option which disables all client side caching.

1.3 basic fault tolerance
Active-active fail-over shall be supported across at least two I/O nodes. Network errors resulting
from I/O node reboot or loss of an I/O node shall trigger a recovery mode in which the forwarding
client shall reconnect to the same or another equivalent server, causing all client side operations to
block until a connection is established. In basic mode, all pending requests may be dropped and
pending system calls associated with those requests may return an appropriate error; however the
mount point remains valid and new requests are handled in the context of the new connection.

1.4 fault tolerance with replay
Same requirements as basic mode, but upon reconnect, client re-establishes any session state,
including open files, and pending operations are retried in the context of the new connection.
Recovery design shall favor simplicity, but to the extent possible, minimize any errors returned to
users and ensure data integrity. All recovery events shall be logged in such a way that users can
be notified (e.g. through resource manager integration).

1.5 security
I/O forwarding protocol shall provide authentication, integrity, and (optionally) privacy. The
security design must include the possibility that valid Kerberos credentials may be required to
access NFSv4 shares or Lustre.

1.6 job separation
It shall be possible for the resource manager to launch I/O forwarding servers dedicated to a
particular job, such that they run with only the user’s credentials. Where these servers execute
shall be determined dynamically by the resource manager.

1.7 monitoring
A well designed plugin API shall permit the resource manager to collect I/O performance data
and event logs pertaining to a particular job.

1.8 performance
Server shall be capable of handling a number of requests per second comparable to that of its
backing file system. Protocol shall minimize the number of requests between client and server and
pipeline them wherever possible.

2. POSIX serial (static, ro)
2.1 network block device

A large file accessible on I/O nodes via I/O forwarding protocol shall be mountable as a block
device on compute nodes.

2.2 no revalidate cache mode
I/O forwarding client shall support a mount option which enables aggressive caching of directory
entries and blocks without revalidation or time-out.

2.3 bootstrap
It shall be possible to mount root via I/O forwarding client from a thin bootstrap image such as
a dracut initramfs.

3. POSIX serial (dynamic, rw)
3.1 NFS CTO cache mode

Forwarding client shall support a mount option which enables caching of directory entries and
blocks that is consistent with the NFS close-to-open (CTO) cache consistency model. CTO says
that a close system call on one client causes the file attributes and content to be immediately
visible when another client issues an open system call.
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4. POSIX parallel
4.1 should not interfere with Lustre consistency

When run in no cache mode (req 1.2) the usual ior, simul, and mdtest tests normally used to test
Lustre should produce identical results as regards consistency and correctness with I/O forwarding
in place. Large I/O requests up to at least 1MiB shall not be broken up into smaller requests by
I/O forwarding system, as doing so might jeopardize record-level consistency.

4.2 Bulk I/O Performance
Write requests greater than a configurable threshold shall be server-scheduled to avoid overwhelm-
ing I/O node buffers. RDMA shall be employed if performance significantly benefits from it.

A Optimizing Path Search in Livermore Computing

Path search is a common UNIX programming idiom and file system use case. It is used in the
following cases, to name a few:

• shell or execvp(3)’s search for executables by iterating over PATH elements

• ld-linux.so search for shared libraries by iterating over /etc/ld.so.conf or LD LIBRARY PATH
elements (although this is mitigated somewhat by ld.so.cache)

• python dynamic linking and loading as explored by the Pynamic Benchmark

• perl module load path

Path Search Example Take for example a shell script that contains a line ”hostname”. On hype
the system default path is set to:

/usr/lib64/qt-3.3/bin:/usr/global/tools/totalview/m/hype/dflt/bin

:/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/sbin

In order to find ”hostname”, the shell must perform a system call such as stat(2) or execve(2) that
will trigger path resolution, as described in path resolution(7), for each possible path starting with
/usr/lib64/qt-3.3/bin/hostname and ending when hostname is found in /bin/hostname.

Cache Effects The dcache assists with this process. For each directory searched unsuccessfully
for hostname, a negative dentry is instantiated in the dcache for hostname in that directory. For
/bin, a positive dentry is instantiated for hostname in that directory. The next time any process on
the system does a path lookup for hostname, it will still need to walk each directory in the PATH
but the path resolution for hostname will be short circuited by the existance of the dcache entries,
provided the entries continue to meet the underlying file system’s criteria for avoiding revalidation.
In other words, the underlying file system will not have to contact its network server (NFS, Lustre)
or access the block layer (ext3, other local file systems) for every hostname path search.

However, It is worth noting that the dcache caches names not directory blocks. Therefore the
dcache cannot ever satisfy a request for a file name that has not been requested before. So even
though only a handful of files exist in /usr/lib64/qt-3.3/bin every path search for a new name begins
by triggering a lookup in the file system backing /usr/lib64/qt-3.3/bin for the new name. For local
file systems this is not too bad because the block layer caches disk blocks backing the directory, and
the underlying file system will still likely be able to satisfy the lookup via the buffer cache (in local
memory). For network file systems, this lookup triggers an RPC to the network file system server.

PATH Search for Executables on LC Systems On our systems all of the above PATH com-
ponents are on network file systems! When a new name is resolved, the latency is the sum of the
RTT’s of an RPC to each server (requests are not pipelined). The root and /usr/local file systems
are read-only, with replicas served from RPS nodes in each scalable unit. The /usr/global file system
is a single enterprise NFS server shared center-wide.
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Configuration Wall clock Notes
Direct ext4 on SATA disk on Opteron 3.375s
The same file system mounted on Atom with NFSv3 40.515s rpcinfo counted 160,485

RPC’s to NFS server dur-
ing test

Loopback mount ext4 image on Opteron 2.896s
Loopback mount ext4 image on Atom, image in 9p 5.475s
Loopback mount ext4 image on Atom, image in
NFSv3

5.163s

NBD mount on Atom 4.842s
iSCSI mount on Atom 6.717s

When path search is invoked during parallel job launch, the load on shared servers multiplies
and RTT degrades. For distant, non-replicated servers, the RTT can become very large.

Improving LC PATH Search Performance The system default PATH should contain only
essential entries, and global file systems especially should be removed if possible. The following are
likely non-essential for most users: /usr/lib64/qt-3.3/bin, /usr/local/sbin, /usr/sbin, and /sbin.

Totalview should be packaged for /usr/local like all the other DEG software development envi-
ronment tools and /usr/global/tools/totalview/m/hype/dflt/bin removed from the path. This will
remove the most egregious RTT scalability problem from the PATH.

For file systems like root and /usr/local that can be used read-only, consider replacing NFS
with a local file system like ext4, shared (read-only) using a network block device implementation,
as described in root file system on network block device. This brings the buffer cache to bear on
directory lookups for previously unknown file names and could improve scaling (and indeed it does,
see below).

Todo: Investigate NFSv4 directory delegations
What about I/O forwarding? In theory I/O forwarding should help this case because the dcache

on forwarding nodes is shared. In practice, diod/9p forwarding disables the dcache on compute
nodes and the net benefit for path lookup is negative for forwarded NFS. We have not tried with
9p’s caching enabled (because it changes expectations of NFS cache coherence).

Testing NFS versus Network Block Device To verify the claim that path search performance
is better on a local file system atop a network block device compared to NFS, a small test was
arranged.

Test setup: 1g ext4 image containing 16 directories with 10,000 zero length files each. The
pathwalk test, for each of 10,000 file names, iterates through the 16 directories trying to stat the
name in each directory. For each name, the first 15 attempts will fail and the 16th will succeed.
Caches were dropped between tests. The following table shows wall clock times for the test between
one Opteron server node and one Atom client:

These results illustrate how NFS’s caching strategy yields poor path search performance com-
pared to ext4 backed by a network block device.

There is insufficient data to conclude anything about which of the four network block device
modes is better. Other network block device methods we could test: SRP, iSER, GNBD, and
RADOS.)

The same test was run on 82 nodes of hype on NFSv3 (server: local RPS node), and on an
ext4 image stored in /g/g0 (global NFS), forwarded to compute nodes with 9p/diod, and loopback
mounted on the compute nodes. Caches were dropped between tests. The resulting graph of wall-
clock run times of pathwalk on various node counts, shows that while NFS offers poor scaling, ext4
backed by a network block device scales essentially the same as the ”null job” on hype. Todo: mpi
version of pathwalk so launch time is already factored out).

Note that the NFS curve is expected to continue up with the node count for a global NFS server
like /usr/global or /usr/gapps. For replicated, read-only file systems like /usr/local or root, the
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Figure 2: Path walk performance for distributed block device based on 9P and diod scales the same
as the null slurm job up to 82 nodes, while NFS begins to slow at 8 nodes.

NFS curve tops out at the scalable unit ratio of compute to RPS server nodes (about where this
graph does, for our systems).

Multiple tasks per node were not attempted. The scaling results should approximate the single
node results above in both NFS and network block device cases due to dcache effects.

Future Directions Applications that live in global NFS file systems really need to be moved to
a medium more suited to parallel launch.

LC could provide a tool set to users and code teams for composing an immutable file system
image that contains all the executable and configuration data needed to run. These images could
be stored forever in an LC copy-on-write snapshot service of some type under unique identifiers.
One would provide the identifier as part of the job submission, and the resource manager would get
the image mounted (read-only) on all compute nodes working on the job. As a side benefit, this
executable image could become part of the job’s execution record and be pulled out later on for
another run in case results need to be rerun or checked. In fact, /usr/local and perhaps root images
could utilize this same service, with versions selectable by users on a per-job basis.
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